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Abstract
The one-loop polarization function of graphene has been calculated at zero temperature for
arbitrary wavevector, frequency, chemical potential (doping), and band gap. The result is
expressed in terms of elementary functions and is used to find the dispersion of the plasmon
mode and the static screening within the random phase approximation. At long wavelengths the
usual square root behaviour of plasmon spectra for two-dimensional (2D) systems is obtained.
The presence of a small (compared to a chemical potential) gap leads to the appearance of a
new undamped plasmon mode. At greater values of the gap this mode merges with the
long-wavelength one, and vanishes when the Fermi level enters the gap. The screening of
charged impurities at large distances differs from that in gapless graphene by slower decay of
Friedel oscillations (1/r 2 instead of 1/r 3), similarly to conventional 2D systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene, a free-standing flat single layer of carbon atoms,
has attracted considerable attention since its experimental
discovery [1] due to its unique electronic properties. The
conduction and the valence bands in graphene touch each other
at zero energy at two inequivalent points, K and K′, in the
momentum space. Close to those points charge carriers have
a linear isotropic energy spectrum E±(k) = ±h̄vF|k| [2]
and behave like relativistic massless Dirac particles in 2 + 1
dimensions, with the Fermi velocity vF � 106 m s−1

playing the role of the speed of light [3]. This remarkable
feature makes graphene different from all other known two-
dimensional systems with their usual quadratic dispersion law
of charged quasiparticles. For the undoped graphene at zero
temperature the valence band is completely filled (‘Dirac sea’)
and the conduction band is empty, which corresponds to a zero
value of the chemical potential (Fermi energy) μ. The latter
can be made non-zero and regulated experimentally by the
applied external electric field [1].

One of the most important fundamental quantities for
understanding physical properties of graphene is the dynamical
polarization function �(ω, k) which describes the screening
of the Coulomb potential due to many-body effects and
determines the collective excitation modes. This function for

graphene at finite chemical potential and ω = 0 has been
calculated in the one-loop approximation in [4]. Later, in [5]
and [6] it was obtained for the arbitrary frequency, and the
results were used, in particular, to find the dispersion of the
plasmon mode within the random phase approximation (RPA).

The present paper deals with the more general case, when
a finite gap 2� between the conduction and the valence band
exists in graphene, and the charge carriers behave analogously
to relativistic massive Dirac particles, with the dispersion

relation E±(k) = ±
√

h̄2v2
Fk2 +�2. Such a gap is observed

in experiments with graphene placed on the silicon carbide [7]
or graphite [8] substrate (with the band gap of about 0.26 eV
or 10 meV, respectively), and is commonly attributed to
the sublattice symmetry breaking due to the commensurate
perturbation from the substrate. Moreover, even in the absence
of any substrate, there should still remain a small gap (2�so ∼
10−3 meV) originating from the spin–orbit interaction [9]. The
gap can also be generated dynamically by applying an external
magnetic field [4, 10]. The dispersion of a plasmon mode
for graphene with the finite spin–orbit fermionic gap has been
obtained numerically in [11]. Our aim is to explore in more
detail the influence of the gap on the plasmon dispersion and
the static charge screening. In this work we restrict ourselves
to the case of zero temperature and calculate analytically the
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dynamical polarization function for gapped graphene. Next we
find the screened Coulomb potential at large distances and the
spectrum of plasmons for different values of the dimensionless
parameter �/μ by solving the dispersion equation with the
obtained polarization function.

2. Model

The low-energy Hamiltonian of graphene can be written in a
Dirac-like form [12],

H0 = −ih̄vF

∑
s=±

�†
s (τ3 ⊗ σ1∂1 + τ0 ⊗ σ2∂2)�s

= − ih̄vF

∑
s=±

�̄s(γ
1∂1 + γ 2∂2)�s, (1)

where �s = (ψs
KA, ψ

s
KB , ψ

s
K′ A, ψ

s
K′ B)

T is a four-component
wavefunction of charged quasiparticles, the components of
which refer to the A and B sublattices and to two inequivalent
valleys in momentum space (around K and K′ points). Pauli
matrices σi and τi act on sublattice and valley components,
respectively (σ0, τ0 are unit matrices), s is a spin index, gamma
matrices are defined as γ 0 = τ0 ⊗ σ3, γ 1 = iτ3 ⊗ σ2,
γ 2 = −iτ0 ⊗ σ1, and �̄s ≡ �†

s γ
0 is the Dirac conjugated

spinor.
Interaction with a substrate of a certain type may break the

sublattice symmetry. In this case the Hamiltonian (1) acquires
an additional term

H� = �
∑
s=±

�†
s τ0 ⊗ σ3�s = �

∑
s=±

�̄s�s, (2)

which is equivalent to the usual Dirac mass term (in the current
representation of γ -matrices), and the energy gap 2� opens
between the valence and the conduction band. Another gap is
driven by a spin–orbit interaction which adds the term

Hso = �so

∑
s=±

s�†
s τ3 ⊗ σ3�s (3)

to the Hamiltonian.

3. Polarization function

The screening of an instantaneous bare Coulomb interaction

U0(t, r) = e2δ(t)

r
= e2

∫
dω

2π

∫
d2k

2π

exp(ikr − iωt)

k
(4)

due to many-body effects is determined by the retarded
polarization function�(ω, k) or, equivalently, by the dielectric
function ε(ω, k) ≡ 1 +�(ω, k)/k, resulting in

U(t, r) = e2

ε0

∫
dω

2π

∫
d2k

2π

exp(ikr − iωt)

k +�(ω, k)
, (5)

where ε0 is an effective background dielectric constant, the
average of that of the substrate and that of the vacuum. Note
that �(ω, k) is defined here in the same way as in [4], which
differs from the polarization function used in [5, 6, 11] by a
factor of −2πe2/ε0.

We consider clean graphene, i.e. the effect of scattering
of charge carriers on impurities is not taken into account. The
polarization function is proportional (with a factor of 2π/ε0)
to the time component of the vacuum polarization tensor
in a three-dimensional quantum electrodynamics (QED3),
where vF is the ‘speed of light’ and �/v2

F is a fermion
mass. We calculate �(ω, k) analytically in the one-loop
approximation. The exact results are given in the appendix
by the equation (A.16) for the case |μ| < � and by the
equations (A.20)–(A.21) for μ > �. In what follows it is
assumed that μ > 0 and ω > 0, taking into account that the
polarization function depends only on the absolute value of μ
and �(−ω, k) = �(ω, k)∗.

At small energies and momenta h̄vFk � h̄ω � μ and
μ > � it is easy to obtain from (A.20) and (A.21)

�(ω, k) � −e2 Nfk2μ

ε0h̄2ω2

(
1 − �2

μ2

)
. (6)

Here Nf is the number of fermions in QED3 (in the case of
graphene Nf = 2 due to the spin degeneracy).

In the absence of a band gap the expression for
the polarization function (A.20)–(A.21) reduces to the one
calculated in [5] and [6], and can be written in the following
way

�(ω, k) = 2e2 Nfμ

ε0h̄2v2
F

− e2 Nfk2

4ε0h̄
√
v2

Fk2 − ω2

×
[

2μ+ h̄ω

h̄vFk

√
1 −

(
2μ+ h̄ω

h̄vFk

)2

+ i arccosh

(
2μ+ h̄ω

h̄vFk

)
+2μ− h̄ω

h̄vFk

√
1 −

(
2μ− h̄ω

h̄vFk

)2

− i arccosh

(
2μ− h̄ω

h̄vFk

)]
, (7)

with the prescription ω → ω + i0. This expression is an
analytic function of ω without singularities in the whole upper
complex half-plane. Hence it coincides also with the result
obtained in [13] when calculated on the positive imaginary
half-axis.

4. Static screening

In the RPA approximation, the static screening of the Coulomb
potential φ0(r) = Ze/r of an impurity with charge density
n0(r) = Zeδ(r) is determined by the static (ω = 0) one-
loop polarization function. The induced charge density in the
graphene plane reads

δn(r) = Ze
∫

d2k

(2π)2

[
1

ε0ε(0, k)
− 1

]
exp(ikr), (8)

and the resulting screened potential is

φ(r) = Ze

ε0

∫
d2k

2π

exp(ikr)
k +�(0, k)

. (9)

2
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At zero frequency and μ > � we recover from (A.20)–(A.21)
the previous result for the static polarization function [4]

�(0, k) = 2e2 Nfμ

ε0h̄2v2
F

⎡
⎣1 − θ(k − 2kF)

⎛
⎝
√

k2 − 4k2
F

2k

− h̄2v2
Fk2 − 4�2

4h̄vFkμ
arctan

h̄vF

√
k2 − 4k2

F

2μ

⎞
⎠
⎤
⎦ . (10)

At large distances from the charged impurity (kFr 
 1),
there are two main contributions to (8) and (9). The first,
Thomas–Fermi contribution, which is determined by the long-
wavelength (k → 0) behaviour of the polarization function,

�(0, k < 2kF) = 2e2 Nfμ

ε0h̄2v2
F

, (11)

is the same as in gapless graphene [5]

δnTF(r) = − e2 Nfμ

πε0h̄2v2
F

φTF(r) = − Zh̄2v2
F

4πNfeμr 3
, (12)

and decays under the same 1/r 3 law as in an ordinary
non-relativistic two-dimensional electron gas (2DEG) [14].
The second contribution is oscillatory (Friedel oscillations)
and comes from the non-analyticity of the polarization
function (10) at k = 2kF where its derivative is discontinuous
(for � �= 0). These oscillations

δnosc(r) = kF

π
φosc(r) = − Ze3 Nfh̄2v2

FkF�
2 sin(2kFr)

2πμ
(
ε0h̄2v2

FkF + e2 Nfμ
)2

r 2
,

(13)
decay as 1/r 2 as in a 2DEG [14] and slower than in gapless
graphene where they obey the 1/r 3 law [15, 5]. The reason
for this difference is that at � = 0 the polarization function at
k = 2kF has a discontinuity only in the second derivative, in
contrast to the case of the gapped graphene and 2DEG.

At μ < �, the static limit of (A.16) reads

�(0, k) = e2 Nf

2ε0h̄2v2
F

(
2�+ h̄2v2

Fk2 − 4�2

h̄vFk

× arcsin
h̄vFk√

h̄2v2
Fk2 + 4�2

)
(14)

(compare with equation (14) in [4]), and the induced charge
density (8) at large distances, which is determined by the long-
wavelength behaviour of (14),

�(0, k → 0) � e2 Nfk2

3ε0�
, (15)

decays as 1/r 3 [16],

δn(r) � Ze3 Nf

6πε2
0�r 3

. (16)

The potential at large distances for this case

φ(r) � Ze

ε0r

(
1 − e4 N2

f

9ε2
0�

2r 2

)
, (17)

in the main order remains screened only by the substrate.

5. Plasmon dispersion

The plasmon dispersion ωp(k) is obtained within the RPA
approximation by finding zeros of the dielectric function
ε(ω, k) or, equivalently, by solving the equation

�(ωp, k)+ k = 0. (18)

Using the approximate expression (6) we obtain immediately
for small ω and k

ωp(k) �
√

e2 Nfkμ

ε0h̄2

(
1 − �2

μ2

)
, (19)

with a square root behaviour usual for two-dimensional
systems [14], which differs from the case of gapless
graphene [5, 6] only by the factor

√
1 −�2/μ2.

To obtain the plasmon dispersion for an arbitrary
frequency and wavevector, the equation (18) with the
polarization function defined at (A.20) and (A.21) is solved
numerically. We use the following parameters: ε0 = 2.5 (this
value corresponds to the case when a graphene sheet is deposed
on a SiO2 substrate) and vF = 106 m s−1.

Regions 1A–2A and 2B–4B (figure A.1) in the (k, ω)
space, in which the imaginary part of the polarization function
is different from zero, form the single-particle excitation
(SPE) continuum, displayed in figure 1 as a shaded area. In
those regions plasmons decay into electron–hole pairs (Landau
damping) and equation (18) has no real solutions. Then one
has to solve the complex dispersion equation

�(ωp − iγ, k)+ k = 0, (20)

finding both energy h̄ωp(k) and the decay rate γ (k) of
plasmons. We solve (20) numerically, using analytical
continuation of (A.20)–(A.21) from the real ω axis into the
lower complex half-plane.

When the damping of the collective mode is weak, the
approximate equation

Re�(ωp, k)+ k = 0 (21)

is often solved [5, 11] instead of (20) and the decay rate, which
is assumed to be small, is determined from another equation,

γ = Im�(ωp, k)

(∂/∂ω)Re�(ω, k)
∣∣
ω=ωp

. (22)

The numerical solutions of equations (20) (for the frequency
and the damping rate) and (21) together with the approximate
analytical solution (19) are plotted in figure 1 for different
values of the gap parameter.

At zero gap there is one plasmon mode which is undamped
until it enters the SPE region (figure 1(a)) [5, 6]. When the
gap is different from zero but is still small (� � 0.22μ),
a new undamped plasmon mode emerges in the gap which
opens between two SPE regions (corresponding to intra- and
interband transitions of electrons) in the vicinity of the line
ω = vFk, as displayed in figure 1(b). The damping part of
the plasmon spectrum is no longer a continuous extension of

3
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Figure 1. Panels (a), (b), (c), and (d) show the plasmon spectrum for� = 0,� = 0.2μ,� = 0.3μ, and � = 0.9μ, respectively, and (e) is a
magnified fragment of (b). Solid lines represent the solutions of the complex dispersion equation, dotted lines are the solutions of the
approximate equation (21) and dashed curves show the long-wavelength square root dependence. The shaded area indicates the SPE regions
in which plasmons decay with the damping rate shown in panel (f) for� = 0 (dashed line) and � = 0.2μ (solid line).

the undamped part but rather a separate mode (figure 1(e)).
When � becomes larger than �0.22μ (this threshold value
depends on the background dielectric constant, for example in
the vacuum, when ε0 = 1, it is approximately equal to 0.29μ),
the damped part of the spectrum disappears and two undamped
modes merge (figure 1(c)). With the further increasing of �,
the plasmon dispersion curve becomes shorter (figure 1(d)) and
vanishes at � = μ. The gap dependence of the plasmon
spectrum described above is also shown in figure 2.

Thus we found that plasmons are absent at � � μ.
Indeed, the dispersion equation (18) can be satisfied only
when �0(ω, k) < 0, and it can be shown from (A.15)

that Re�0(ω, k) > 0 in the region where �0(ω, k) is real
(however, for the gapless case this conclusion was shown to
be an artefact of the RPA approximation [17], and the ladder
corrections to the polarization function lead to the existence of
the undamped plasmon mode even at μ = � = 0).

In those regions where the solutions of equations (20)
and (21) are close to each other, the decay rate given by (22)
is small and does not differ significantly from γ obtained
from (20). When the solutions move away from each other,
it turns out that the expression (22) is not small, and the
approximate equations (21) and (22) are not valid. In
particular, the lower branch which appears for � �= 0 and lies

4
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Figure 2. Coordinates (momenta) of the undamped plasmon mode
edges as a function of the gap value: the end of the mode starting at
k = 0 (solid line), the beginning (dotted line) and the end (dashed
line) of the second mode which is absent in the gapless case.

fully in the intraband SPE region (figures 1(b)–(e)) is merely
an artefact of this approximation.

Our numerical results are in agreement with the work [11],
where the equation (21) has been solved and a graph, similar
to figure 1(c) was obtained for the case of zero temperature.

6. Conclusions

We have calculated analytically the one-loop polarization
function in the presence of a finite gap in the spectrum of Dirac
quasiparticles. The result is expressed in terms of elementary
functions and is valid for arbitrary wavevector, frequency,
doping, and gap. The obtained expression is employed to
calculate the static screening of Coulomb potential and the
spectrum of plasmons within the RPA approximation. The
oscillating part of the screened potential decays slower than
in the gapless graphene, while the non-oscillating part is the
same. It turns out that collective plasmon modes are present
only at � < μ, i.e. when the Fermi level lies outside the gap.
At long wavelengths the plasmon dispersion shows the usual
square root dependence for 2D systems. At non-zero gap, an
additional undamped mode is present at small values of �/μ,
and at 0.22μ � � < μ only one undamped plasmon mode
remains.
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Appendix. Calculation of Π(ω, k)

To obtain the retarded polarization function we start with a
finite temperature T . In the one-loop approximation it is given
by the expression

�(iωm, k) = 2πe2T Nf

ε0

+∞∑
n=−∞

∫
d2q

(2π)2

× tr
[
γ0S(iωm + i�n,k + q)γ0S(i�n,q)

]
, (A.1)

Figure A.1. Regions with different expressions for polarization
function (here� = 0.86μ). At the borders�(ω, k) is smooth
(dotted line) and has a logarithmic singularity (solid line) or
discontinuity of its derivative (dashed line).

where ωm = 2πmT/h̄ and�n = (2n+1)πT/h̄ are Matsubara
frequencies, and the propagator of Dirac quasiparticles has the
form

S(i�n,q) = i

(ih̄�n − μ)γ 0 − h̄vFqγ −�
. (A.2)

Here we are not taking into account the spin–orbit gap,
considering only the sublattice symmetry breaking mass
term (2). After taking the trace over spinor indices we obtain
(for convenience we shall omit constants h̄ and vF during
intermediate calculations)

�(iωm, k) = −2e2T Nf

πε0

+∞∑
n=−∞

∫
d2q

× (iωm + i�n − μ)(i�n − μ)+ q(k + q)+�2

[
(iωm + i�n − μ)2 − E2

k+q

][
(i�n − μ)2 − E2

q

] ,

(A.3)

with Eq = √
q2 +�2. To perform the summation over n we

rewrite the integrand as

∑
λ,λ′=±

1

4

(
1 + λλ′ q(k + q)+�2

Eq Ek+q

)

× 1

i�n − μ+ λEq

1

i�n + iωm − μ+ λ′ Ek+q
, (A.4)

where λ, λ′ are band indices, and then use the formula
+∞∑

n=−∞

1

i�n − μ+ x1

1

i�n + iωm − μ+ x2

= 1

T

nF(x1)− nF(x2)

x1 − x2 − iωm
, (A.5)

where nF(x) = [e(x−μ)/T + 1]−1. After summation, the
analytic continuation from Matsubara frequencies is made by

5
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the replacement iωm → ω + i0, and the retarded polarization
function reads

�(ω, k) = − e2 Nf

2πε0

∫
d2q

∑
λ,λ′=±

(
1 + λλ′ q(k + q)+�2

Eq Ek+q

)

× nF(λEq)− nF(λ
′ Ek+q)

λEq − λ′ Ek+q − ω − i0
. (A.6)

The same expression (with �so instead of �) is obtained if the
sublattice symmetry is unbroken and the spin–orbit gap (3) is
taken into account [11], hence our results will be valid for both
cases. At zero temperature Fermi functions nF(x) turn into step
functions θ(μ− x), and (A.6) gives

�(ω, k) = −χ−
∞(ω, k)+ χ+

μ (ω, k) + χ−
μ (ω, k), (A.7)

where

χ±
D (ω, k) = − e2 Nf

2πε0

∫
d2q θ(D2 −�2 − q2)

×
(

1 ± q(k + q)+�2

Eq Ek+q

)

×
(

1

ω + Eq ∓ Ek+q + i0
− 1

ω − Eq ± Ek+q + i0

)
.

(A.8)

Here the upper and the lower signs correspond to intraband
and interband electron–hole transitions, respectively, and the
parameter D defines the integration limits. We proceed with
further calculations in a similar way to those shown in [5] for
massless Dirac quasiparticles (� = 0). In the case μ < �

(when the Fermi level lies in the band gap) only the first term
in (A.7) survives. Thus we can split our polarization function
into two parts

�(ω, k) = �0(ω, k)+ θ(μ−�)�1(ω, k), (A.9)

where �0(ω, k) = −χ−∞(ω, k) is the polarization function at
chemical potentialμ < �, which does not depend on the value
of μ, and

�1(ω, k) = χ+
μ (ω, k)+ χ−

μ (ω, k) (A.10)

is a correction to the polarization function in the case when the
chemical potential is greater than the gap parameter �.

At first we consider the imaginary part of (A.8),

Imχ±
D (ω, k) = e2 Nf

2ε0
θ(D −�)

∫ √
D2−�2

0
dq q

∫ 2π

0
dϕ

×
(

1 ± q(k + q)+�2

Eq Ek+q

)

× [
δ(ω + Eq ∓ Ek+q)− δ(ω − Eq ± Ek+q)

]
. (A.11)

Arguments of these δ-functions determine the SPE regions in
the (k, ω) space. The integration over ϕ yields

Imχ±
D (ω, k) = e2 Nf

ε0
θ(D −�)

∑
β=±

∫ D

�

dE

× [θ(β)θ(±1)∓ θ(−β)θ(±E ∓ ω)][(2E + βω)2 − k2
]

× θ
(
(k2 − ω2)

[
(2E + βω)2 − k2

] − 4k2�2
)

√
(k2 − ω2)

[
(2E + βω)2 − k2

] − 4k2�2
. (A.12)

Taking the lower sign and setting D = ∞ in the above
expression and integrating over E we obtain the imaginary part
of polarization at μ < �,

Im�0(ω, k) = −Imχ−
∞(ω, k)

= πe2 Nfk2

4ε0

√
ω2 − k2

θ(ω2 − k2 − 4�2)

(
1 + 4�2

ω2 − k2

)
.

(A.13)

We find the real part of the polarization function at μ <

� from the Kramers–Kronig relation, using its already
known imaginary part (A.13), instead of direct calculation of
Reχ−∞(ω, k) from equation (A.8)

Re�0(ω, k) = 1

π
v.p.

∫ ∞

−∞
dω′ Im�0(ω

′, k)

ω′ − ω

= e2 Nfk2

4ε0
v.p.

∫ ∞

−∞
dω′ θ(ω

′2 − k2 − 4�2)

(ω′ − ω)
√
ω′2 − k2

×
(

1 + 4�2

ω′2 − k2

)
sgnω′. (A.14)

After integration we have

Re�0(ω, k) = e2 Nfk2

ε0

{
�

k2 − ω2
+ k2 − ω2 − 4�2

4|k2 − ω2|3/2

×
[
θ(k − ω) arccos

k2 − ω2 − 4�2

ω2 − k2 − 4�2

− θ(ω − k) ln
(2�+ √

ω2 − k2)2

|ω2 − k2 − 4�2|

]}
. (A.15)

We can combine (A.13) and (A.15), obtaining the retarded
version of the time component of the well-known expression
for the polarization tensor in QED3 [18],

�0(ω, k) = e2 Nfk2

2ε0h̄(v2
Fk2 − ω2)

(
2�

h̄
+ v2

Fk2 − ω2 − 4�2/h̄2

√
v2

Fk2 − ω2

× arcsin

√
v2

Fk2 − ω2

v2
Fk2 − ω2 + 4�2/h̄2

)
, (A.16)

where the prescription ω → ω+ i0 is used (compare also with
equation (6) in [16]).

Using the expressions (A.10) and (A.12) we can write the
correction to the imaginary part of the polarization function as

Im�1(ω, k) = e2 Nf

ε0

∑
β=±

∫ μ

�

dE

× sgn(ω + βE)
[
(2E + βω)2 − k2

]

× θ
(
(k2 − ω2)

[
(2E + βω)2 − k2

] − 4k2�2
)

√
(k2 − ω2)

[
(2E + βω)2 − k2

] − 4k2�2
. (A.17)

The real part of �1(ω, k) is obtained from (A.10) and (A.8),
and after some algebraic simplifications it reads

Re�1(ω, k) = e2 Nf

πε0

∫ √
μ2−�2

0

dq q

Eq
v.p.

∫ 2π

0
dϕ

×
[

(ω + 2Eq)Eq + qk

k2 − ω(ω + 2Eq)+ 2qk
+ (ω → −ω)

]
. (A.18)
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Integrating this expression over the angle we find

Re�1(ω, k) = e2 Nf

ε0

{∫ μ

�

dE

[
sgn

(
k2 − ω(2E + ω)

)

× θ
(
(ω2 − k2)

[
(2E + ω)2 − k2

] + 4k2�2
)

√
(ω2 − k2)

[
(2E + ω)2 − k2

] + 4k2�2

× [
(2E + ω)2 − k2

] + (ω → −ω)
]

+ 2(μ−�)

}
.

(A.19)

Performing the last integration in (A.17) and (A.19) and adding
the results to (A.13) and (A.15), respectively, we arrive at
the final expression for the polarization function at μ > �.
Restoring constants h̄ and vF and introducing the following
notations

f (ω, k) = e2 Nfk2

4ε0h̄
√

|v2
Fk2 − ω2|

,

x0 =
√

1 + 4�2

h̄2(v2
Fk2 − ω2)

,

G<(x) = x
√

x2
0 − x2 − (2 − x2

0) arccos(x/x0),

G>(x) = x
√

x2 − x2
0 − (2 − x2

0)arccosh(x/x0),

G0(x) = x
√

x2 − x2
0 − (2 − x2

0)arcsinh
(

x
/√−x2

0

)
,

we can write the results in the next form

Re�(ω, k) = 2e2 Nfμ

ε0h̄2v2
F

− f (ω, k)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 1A

G<

(
2μ− h̄ω

h̄vFk

)
, 2A

G<

(
2μ+ h̄ω

h̄vFk

)
+ G<

(
2μ− h̄ω

h̄vFk

)
, 3A

G<

(
2μ− h̄ω

h̄vFk

)
− G<

(
2μ+ h̄ω

h̄vFk

)
, 4A

G>

(
2μ+ h̄ω

h̄vFk

)
− G>

(
2μ− h̄ω

h̄vFk

)
, 1B

G>

(
2μ+ h̄ω

h̄vFk

)
, 2B

G>

(
2μ+ h̄ω

h̄vFk

)
− G>

(
h̄ω − 2μ

h̄vFk

)
, 3B

G>

(
h̄ω − 2μ

h̄vFk

)
+ G>

(
2μ+ h̄ω

h̄vFk

)
, 4B

G0

(
2μ+ h̄ω

h̄vFk

)
− G0

(
2μ− h̄ω

h̄vFk

)
, 5B

(A.20)

Im�(ω, k) = f (ω, k)

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G>

(
2μ+ h̄ω

h̄vFk

)
− G>

(
2μ− h̄ω

h̄vFk

)
, 1A

G>

(
2μ+ h̄ω

h̄vFk

)
, 2A

0, 3A

0, 4A

0, 1B

−G<

(
2μ− h̄ω

h̄vFk

)
, 2B

π(2 − x2
0 ), 3B

π(2 − x2
0 ), 4B

0, 5B

(A.21)

with the following regions in the (k, ω) space (shown in
figure A.1)

1A : h̄ω < μ−
√

h̄2v2
F(k − kF)2 +�2,

2A : ±μ∓
√

h̄2v2
F(k − kF)2 +�2 < h̄ω

< −μ+
√

h̄2v2
F(k + kF)2 +�2,

3A : h̄ω < −μ+
√

h̄2v2
F(k − kF)2 +�2,

4A : −μ+
√

h̄2v2
F(k + kF)2 +�2 < h̄ω < h̄vFk,

1B : k < 2kF,

√
h̄2v2

Fk2 + 4�2 < h̄ω

< μ+
√

h̄2v2
F(k − kF)2 +�2,

2B : μ+
√

h̄2v2
F(k − kF)2 +�2

< μ+
√

h̄2v2
F(k + kF)2 +�2,

3B : h̄ω > μ+
√

h̄2v2
F(k + kF)2 +�2,

4B : k > 2kF,

√
h̄2v2

Fk2 + 4�2 < h̄ω

< μ+
√

h̄2v2
F(k − kF)2 +�2,

5B : h̄vFk < h̄ω <
√

h̄2v2
Fk2 + 4�2,

(A.22)

where kF ≡ √
μ2 −�2/h̄vF.

In the gapless limit x0 becomes equal to 1, regions 4A,
4B, and 5B vanish, and the expressions (A.20)–(A.21) reduce
to (7).
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